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Telescope Optics: Motivation

Need for Lightweight Telescope Optics

* Decrease the weight of current Wolter
Type | optics to allow for greater shell
packing and thus increase effective X-ray

collection area
(i.e. increase the optical surface area per unit mass)

* Reduce the requirements and cost of
telescope launch vehicle

10m (33 f1)

Chandra X-ray observatory utilizing 4 nested zerodur optics with
the outer shell measuring 1.2 meters in diameter.

Cross sectional view of Wolter | optic showing grazing angle
reflection and nested reflector capability

Current State of the Art X-ray observatory (
58 nested reflector shells; largest reflector 70cm diameter.

Note the increased number of shells compared to that of Chandra
resulting in greater optical area and thus greater X-ray collection

Benefit of Electroformed Optic

* Individual mirror thickness reduced by
greater than an order of magnitude

(Imm vs. 20mm)

e Reduced mirror thickness allow for a
greater number of shells to be nested

Disadvantage of Electroformed Optic

* Density of Ni compared to zerodur

* Figure accuracy not as good as zerodur
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Telescope Manufacturing

Benefit of the Electroforming

Process

* Well suited for precision
replication (widely used in
optical manufacturing)

e Superpolished mandrel is
reuseable, can be “touched
up” as necessary

Electroformed nickel replication (ENR)

Disadvantage of Electroformed

Optic

* Density of Ni compared to
zerodur (8.9g/cm3 vs 2.5 g/cm3)

* Figure accuracy not as good

L o o e ] as zerodur

NiCo alone is too heavy for X-ray telescope missions

There exists a need to replace much of the NiCo with a less dense material
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Telescope Optics: Proposed Innovation

Current Proposed

Current Standard State of the Art Innovation

Dense Al/Al,O,

Electroformed Ni

Thickness of
NiCo remains
constant as
shell diameter

<100um NiCo increases

Q ‘»"//

Comparison : Mass of Wolter I Optic with a 70cm diameter, 60cm long

68.7 kg 11.8 kg

Proposed Innovation

* Replace zerodur optic with NiCo shell and thermal spray ceramic support structure

e Utilize NiCo electroforming to replicate the surface micro-roughness of the mandrel

 Combine a graded-density lightweight ceramic support coating to hold figure accuracy
and supply rigidity for handling

200pum Al,Oq

1.9 kg
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What is Thermal Spray

Thermal Spray Processes

Twin Wire Flame / Atmospheric High Velocity Cold Detonation
Arc Combustion  Plasma Spray Oxy Fuel Spray Spray
http://’www.thermalspray.org/site_plasmaarc.asp
Pl as m a s p ray P ro c ess © 2005 International Thermal Spray Association
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Thermal Sprayed Applications/Components

Wide Range of Thermal Spray Coated Components

Energy- Gas Turbine  Industrial Aviation Engine/ _ Bio- Metal / Paper Electronics
Engine machinery Landing Gear implants Manufacturing Manufacturing
APPLICATIONS
Thermal Spray
Processes
COATING MATERIAL &
MICROSTRUCTURE
) : : : Thick
PHYSICAL Th|c|fness Thickness Thickness TthkneSS- IcKness Thickness
Weight Crack Crack Defect Density Crack Defect Density
CHARACTERISTICS Porosity Porosity Weight Roughness Roughness
Residual Stress Residual Stress Residual Stress Residual Stress Residual Stress Residual Stress
PROPERTIES & Adhesion Adhesion Adhesion Adhesion Adhesion Adhesion
Sintering/Aging Strength Strength Toughness Strength Erosion
PERFORMANCES Conductivity Toughness Toughness Phase Stability Toughness Phase Stability
Toughness Wear Wear Wear Thermal Expansion
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Why Thermal Spray for this Application?

Materials Selection
* Wide array of materials to select from
e Metals, ceramics, polymers, composites
e Ability to tailor the material to not only match the
expansion but also provide compliance via defects
(thermal cycling compliance)

Process Parameters
e Ability to tailor the microstructure, density, and
interface through use of graded layers
e Ability to control deposition temperature
* Robot raster speed _§ 2 s
e Secondary cooling

" NiAl deposited onto canvas

Component Manufacturing
* Ability to deposit onto large cylindrical geometries

e Easily scalable

* Deposit directly onto electroformed shell
* Cost effective and efficient
* Established industry base, does not require large

capital expense for application

4"& Smithsonian

— e ——
; # Astrophysical BEIIa coat

v“v Observatory Technologies




ReliaCoat Emerged from the Center for Thermal Spray Research
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ReliaCoat Technologies, LLC

Advanced Hardware & Software Technologies Linking Advanced Science
to Industrial Products
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Tools for Measuring Deposit Evolution and Coating Properties

Stress (MPa)

Process
Parameters Control

Denser
Microstructure
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Critical System Level Issues

Material Compatibility
« Thermal mismatch

Minimal Coating Residual Stress
« Separated optic shape retention

Coating Adhesion
* Bond strength

Minimize Thermal Input to Mandrel
« Figure accuracy

No Damage from Particle Impact
» Optical surface distortion

Prototype Multilayer

Environmental Considerations Coated Electroformed
* Vacuum Hard X-ray Telescope
« Qutgassing (NASA/MSFC and Brera Obs.)
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Challenges and Mitigation Strategies

Defined Challenges

Light weight, rigid & high toughness carrier layer

Proposed Mitigation Strategies

Base structure of Al,O5 or other porous ceramic coating
Al,O5-Aluminum composite/functionally graded structure
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Approach

Aluminum Powder

Evaluate potential particle damage

Fine powder size to using nickel and aluminum foil

minimize particle energy

%
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Flame Spray Plasma Spray

Process development using NiCo plated silicon wafers
(due to mandrel availability), continued testing on flat
and conical mandrels to evaluate X-ray performance
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